Wilfror Technology Days

16-18 June, 2009, Albuquerque, NM

High Frequency Phased Arrays for SiC NDE

Xiaoning Jiang¹, Kevin A. Snook¹, Ruibin Liu², Andrew Portune³, Changhong Hu⁴, John Welter⁵, Xuecang Geng², Rich Haber³, Kirk Shung⁴, and Wesley S. Hackenberger¹

⁵ Nondestructive Evaluation Branch, Wright Patterson AFB, OH

¹ TRS Technologies, Inc., State College, PA.

² Blatek, Inc., State College, PA.

³ Ceramic and Composite Materials Center, Rutgers University, Piscataway, NJ
 ⁴ Biomedical Engineering, University of Southern California, Los Angeles, CA 90089

Acknowledgement

- This work is sponsored by US Air Force under the SBIR Phase II contract # FA8650-08-C-5205.
- Authors would like to acknowledge the helpful discussions from Dr. Larry Matson at AFRL.

Outline

- **≻**Background
 - -- Ultrasound NDE
 - -- PCMUT (Piezo-Composite Micromachined Ultrasound Transducer)
- ➤ High Frequency Phased Array
 - -- Array specifications
 - -- Modeling results
 - -- Phased array prototyping
- **≻**Summary

NDE for Ceramics

Ceramic Defects: crack, void, delamination, residue stress, inclusion, etc.

-- RAPT Industries, "Rapid Fabrication of Lightweight SiC Mirrors Using RAPTM Processing", Mirror Tech Days'06, Albuquerque, AL, 2006.

- •Optical metrology: can only detect surface damage.
- •X-ray: can not distinguish damage at various depths and has limited resolution.
- •Acoustic NDE: can detect both surface and sub-surface damage. Need high frequency phased array for in-situ real time imaging with high spatial resolution.

Ultrasound NDE

Single Element

Phased Array

- •Frequency, F#: high resolution at both axial and lateral, limited penetration depth
- Mechanical scanning

- •Frequency, element numbers: high resolution in axial, lateral and sectoral direction, high penetration depth;
- Electronic scanning

--*M. Moles, "Ultrasonic Phased Array",*http://www.olympusndt.com/en/ultrasonic-phased-array/.

High Frequency Ultrasound

>Currently available HF transducers

- -- Piezoelectric Materials: ZnO, LiNbO₃, PVDF, and PZT—low piezoelectric response
- -- Thickness mode: k_t < 0.5
- -- Array: frequency < 20 MHz, limited in fabrication of fine pitches ($\sim \lambda/2$)

>TRS Approach: PC-MUT

- -- Material: single crystal piezoelectric 1-3 composite—high piezoelectric response
- -- Effective "33" mode: $k_{33} > 0.7$ (@ 40 MHz)
- -- Array: fine pitches can be fabricated using photolithography based deep reactive ion etching process

High Frequency Composite Fabrication

- Use Photolithography & Plasma Etching
- Form Fine Features in High Performance Single Crystal
- High Frequency, High Performance Composite
- Very High Resolution, **Broad Bandwidth Single Elements**
- Basis for Very High Frequency **Integrated Array Transducers**

Pulse-Echo Tests (75 MHz)

-20 dB pulse width: 0.03-0.06 us

75 MHz C-Scan Experiments

Bottom Reflected amplitude

Bottom to top TOF

4 mm thick CVD SiC

Phased Array

Beam steering Point 1

Electronic time delays

- For beamforming, use time delays so acoustic summation occurs at different points in field
- Time delays also occur in lens and physically focused transducers
- During receive, signals delayed and summed

One Dimensional Modeling

- Redwood equivalent circuit model provides representation of piezoelectric plate for compressional plane waves
- Model used to determine electroacoustic response of elements
- Incorporates transmission lines for piezo, stack layers to represent time delays, losses and reflections due to impedance mismatching
- Allows implementation of circuit components such as coaxial cables, tuning components

General Redwood circuit

Acoustic Field Modeling

- Field II* run through MATLAB
- Uses concept of spatial impulse response to calculate field
- Transducer aperture divided into small squares which allows far-field approximation to be used

- Focusing and apodization handled through signal weighting and time delaying excitation
 - Amplitude = excitation waveform X apodization X impulse response
 - Time delay = beamformer + lens/curvature
 - All sources in one element have amplitude and time delay
- Delay and sum waveforms to achieve field waveform
- Repeat for all points in field of interest
- Attenuation linear in field, centered around attenuation at center frequency point

35 MHz PCMUT Phased Array

Array center frequency	35 MHz
Elements in array	64
Array pitch	132 μm (0.4λ)
Total array azimuth	8.44 mm
PMN-PT post width	14 μm
Sub-"diced" kerf	4-5 μm
Inter-element kerf	9-10 μm
Composite thickness	35 μm
Array elevation	4 mm
Lavational focus	12 mm (f# 4.8)
Titanium matching	44 μm thick (27.3 MRayls)
Epoxy loaded backing	2-3 MRayls

Willror Technology Days

16-18 June, 2009, Albuquerque, NM

Electrical Impedance

Electrical impedance for each element ~ 150 Ohm

Impulse Modeling

- •The -20 dB ringdown of the pulse is ~ 55 ns, which corresponds to a 20 dB resolution of 633 μm (the ~ 20 ns 6 dB ringdown corresponds to 215 μm).
- •-6dB bandwidth > 80%

Acoustic Field (Focusing)

Side lobes and grating lobes are significantly lower than the main beam.

Normalized acoustic pressure at a radial distance of 10 mm (180° sweep) when focusing at 60°.

Phased Array (10 MHz) Prototyping

10 MHz phased array:

64-element; 0.5 mm pitch; 7 mm elevation

35 MHz Phased Array Prototyping

PMN-PT 1-3 composite

Phased Array Characterizations

Pulse-echo results for a 64-channel 10 MHz array

•-6dB bandwidth: ~ 75%

•Status: Cable connection and housing integration

35 MHz Phased Array Characterizations

Panametric 5900 pulser,

1 µJ energy, net gain - attenuation =0

50 Ohms damping

LeCroy 452 500 MHz Oscilloscope

Center frequency: ~ 35 MHz

-6dB bandwidth: 80-100%

Summary and Future Work

- A 35 MHz PC-MUT phased array was designed for ceramic NDE applications.
- The -3 dB beam width on transmit varies from approximately 300 μ m at 4 mm to 1.09 mm at a 16 mm depth. Considering that the detection limit is flaws that are approximately 10% of the beam width, which corresponds to 30-109 μ m in the azimuth.
- The main determinations from the initial array modeling are that a sector of 90° 120° is possible. The maximum imaging depth is more than 2 cm.
- A 64 channel 10 MHz phased array and a 64 channel 35 MHz phased array were prototyped and the initial pulse-echo tests showed promising sensitivity and bandwidth.

Future Work: NDE experiments using HF phased arrays.